The Chemical Lagrangian Model of the Stratosphere (CLaMS)

CLaMS (Chemical Lagrangian Model of the Stratosphere) is a modular chemistry transport model (CTM) system developed at Research Centre Jülich, Germany. CLaMS was first described by McKenna et al (2000a,b) and was expanded into three dimensions by Konopka et al (2004). CLaMS has been employed in various European aircraft field campaigns including THESEO, EUPLEX, TROCCINOX, SCOUT-O3, RECONCILE and STRATOCLIM with a focus on simulating ozone depletion and water vapour transport.

Major strengths of CLaMS in comparison to other CTMs are

CLaMS Documentation

The details of the model CLaMS are well documented and published in the scientific literature.

The Main CLaMS Modules

  1. Trajectory module

  2. Chemistry module

  3. Lagrangian mixing module

  4. Lagrangian sedimentation scheme

More CLaMS Modules

The CLaMS ksh runscript

Used Libraries

Using MPI


CLaMS on Supercomputers





CLaMS-ice is a combination of CLaMS trajectories with the double moment bulk microphysics scheme cirrus_bulk for calculating cirrus formation.

CLaMS data sets

A chemical transport model does not simulate the dynamics of the atmosphere. For CLaMS, the following meteorological data sets have been used

To initialize the chemical fields in CLaMS, a large variety of instruments have provided data

If no observations are present, the chemical fields can be initialised from two-dimensional chemical models, chemistry-climate models, climatologies, or from correlations between chemical species or chemical species and dynamical variables.

Example animations

Example animations from a CLaMS simulation of the 2004/05 winter are shown on the page ExampleAnimations.

Additional Tools

Flight planning tool MSS


Development: (for bug reports and feature requests, please create an issue under the menu point "issues")


Link to the CLaMS-Groups ECHAM5-Licenses

CLaMSWiki (last edited 2018-07-19 11:41:07 by JensUweGrooss)